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Fig. 7. (Top panel) Equiprobability curves defining the
{10, 20, 30, . . . , 90}th percentiles of the models: (Black ellipses)

C ∼ WC
d
(L = 4,Σ = Σ0), (red) C ∼ WC

d
(L = 4,Σ = Σ0, α = 16),

and (blue) C ∼ WC
d
(L = 4,Σ = Σ0, λ = 16) for N = 1024 samples

based on Q2 ∼ χ2(2) with ν = {2, 3}. (Middle panel) Equiprobability
curves defining the 50th percentile of the model K(L = 4,Σ = Σ0, α = 16)
based on Q ∼ χ2(2) with ν = {2, 3} as a function of sample size
N . (Bottom panel) Equiprobability curves defining the 95th percentile
for sample size N = 1024 of the data sets used to test the χ2 test of
H0 : C ∼ K(L = 4,Σ = Σ0, α = 8).

are the 95th percentile equiprobability curves of all data sets
applied to the test of the Kd(8) hypothesis, with colors and
line styles corresponding to those used and defined in Figs. 4
and 6. The intersection areas between the H0 ellipse and the

data-set ellipses can be approximately related to the probability
of falsely accepting H0 with the respective data set as input,
which is equal to one minus the test power. This interpretation
corresponds with the test powers measured in the middle panel
of Fig. 6 for n = 1024.

C. Composite Test Applied to Simulated Data

1) Test Data Sets for the Composite Hypotheses: For the
tests of the composite GoF hypothesis, we assume that the
number of looks L is known or can be estimated for the data
set as a whole (see [37] for a review of estimation procedures).
The scale matrix and the texture parameters are unspecified. We
avoid the problem of estimating Σ by using tests based on the
second- and third-order MLCs only. The texture parameters are
estimated with the MAL estimator described in Section III-C.3
and evaluated in [13]. The test statistic Q′

p is applied to two
composite hypotheses

H0 : C ∼Kd(L = 4,Σ, α)

H0 : C ∼G0
d(L = 4,Σ, λ).

No dedicated test for the sWC
d distribution is performed in the

composite hypothesis case. Because the sWC
d distribution has

no texture parameters that need to be estimated, the composite
test of a sWC

d hypothesis reduces to the simple test when it is
based on MLCs of order ν = 2 and higher.

The data sets applied to the composite tests are the same as
that which we applied to the simple tests. These are shown
in Figs. 3–5. For the test of the Kd hypothesis, we limit
the testing to one Kd distributed data set, in addition to the
sWC

d distributed data set, noting that the sWC
d distribution

is a special case of the Kd distribution obtained as a limiting
case when α → ∞. These data sets are used to check whether
we meet the specified test size with the algorithm based on
Monte Carlo simulation of the sampling distribution for the test
statistic Q′

p. The same approach is taken for the test of the G0
d

hypothesis, and we equivalently note that the G0
d converges in

distribution to the sWC
d distribution as λ → ∞.

2) Performance Results: Fig. 8 shows the results of the
composite GoF test of the Kd hypothesis (upper panel) and
the G0

d hypothesis (bottom panel). Note that the figures present
rejection rate instead of test power. The explanation is that
when the input data set belongs to the distribution family under
H0, the rejection rate is the probability of falsely rejecting H0,
which is the same as the test size. When the input data set
belongs to a different family, the rejection rate is the probability
of correctly rejecting H0, previously defined as the test power.
The tests are performed at the αc = 0.05 significance level.

Because we have used the same input data and the same test
sizes, the performance of the composite tests can be directly
compared to the simple tests in Fig. 6. For the test data sets
that belong to another distribution family than H0, the test
power increases with n as expected, but at a slower rate than
for the simple tests. The ranking of the data sets in terms of
detectability has changed, and we do not observe any crossing
of the rejection rate curves, as we did in Fig. 6. This may reflect
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Fig. 8. Rejection rate of the Q′
p test of the composite hypotheses (top)H0 :

C ∼ K(L,Σ, α) and (bottom) H0 : C ∼ G0(L,Σ, λ) at the αc = 5% sig-
nificance level with ν = {2, 3} for various data distributions, as function of
sample size n.

that the sampling distributions of Q′
p and Qp are different and

also that the Monte Carlo simulation method yields the true
sampling distribution, while the χ2 approximation used for the
simple tests is an approximation, whose validity increases with
n. The approximately flat curves at the 0.05 rejection rate level
depict the measured test size when the input data set satisfies
H0. If we disregard fluctuations that can be attributed to ex-
pected statistical variations of the Monte Carlo simulations, the
measured test size seems to meet the specified test size. The
exception is for sWC

d distributed input data with small sample
sizes, where the measured size exceeds the specified size.

D. Composite Test Applied to Real Data

It remains to test the GoF tests against real data. We have
selected three data sets acquired by the Radarsat-2 C-band SAR
instrument in fine-quad polarization mode. The scenes are from
the following: 1) Flevoland, The Netherlands; 2) San Francisco,
U.S.; and 3) Oberpfaffenhofen, Germany. From the full scenes,
we have extracted the subsets shown in the upper rows of
Figs. 9–11. From each subset, we have cropped four image
samples, selected to be as homogeneous as possible, meaning
that the statistics should be stationary over the spatial extent of
the samples. The size of each image sample is n = 16× 16 =

Fig. 9. (Top) Subset of Radarsat-2 fine-quad polarization mode image of
Flevoland, The Netherlands, acquired on March 2, 2008. (Middle) Homoge-
neous samples of a water body, urban area, and (labeled A and B) two vegetated
areas. (Bottom) MLC diagram with sample MLCs computed from the image
samples.

Fig. 10. (Top) Subset of Radarsat-2 fine-quad polarization mode image of San
Francisco, U.S., acquired on March 9, 2008. (Middle) Homogeneous samples
of a water body, a vegetated area, and (labeled A and B) two urban areas.
(Bottom) MLC diagram with sample MLCs computed from the image samples.

256 pixels. We make the simplifying assumption that the pixels
represent independent measurements, even though they are, in
reality, correlated.

The image samples are outlined by the small colored squares
in the upper row images, and enlarged versions are shown in the
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Fig. 11. (Top) Subset of Radarsat-2 fine-quad polarization mode image of
Oberpfaffenhofen, Germany, acquired on March 6, 2008. (Middle) Homoge-
neous samples of (labeled A) a vegetated area, an urban area, (labeled B) a
vegetated area, and a water body. (Bottom) MLC diagram with sample MLCs
computed from the image samples.

middle row of the figures. The bottom row of each figure shows
an MLC diagram, where sample MLCs of each homogeneous
image sample have been plotted on top of the population MLC
manifolds of the sWC

d , Kd, and G0
d distributions. Multiple

sample MLCs are obtained from each image sample by col-
lecting 64 bootstrap samples [23] of size nbs = 128 from the
total n = 256 covariance matrix samples. That is, we reuse the
data within the image samples by drawing subsamples with
replacement. In this way, we can visualize the statistical spread
of the sample MLC distribution, which differs a lot between the
image samples. The equivalent number of looks was estimated
at L = 8.0.

From the Flevoland subset in Fig. 9, we have extracted
a water sample (magenta-colored square), an urban sample
(cyan square), and two vegetation samples, labeled A and B
(orange and indigo squares). The false-color RGB images are
composites made from intensity channels of the Pauli decom-
position [38]. The well-known color interpretation of the so-
called Pauli images in terms of scattering mechanisms tells us
that the blue-water sample is dominated by surface scattering,
the pinkish urban sample by double bounce scattering, and the
green vegetation A sample by volume scattering. The turquoise
appearance of the vegetation B sample reveals a mixture of
volume and surface scattering.

In the MLC diagram, the collection of sample MLCs for
the water, vegetation A, and vegetation B samples (shown as
magenta, orange, and indigo dots, respectively) are all well
clustered. The clusters may seem to fall close to the black
square, representing the sWC

d distribution, and also the red
and blue lines, corresponding to the Kd and G0

d distributions,
respectively. The sample MLCs for the urban sample have a

TABLE III
p VALUES OF GOF TESTS FOR FLEVOLAND DATA SET

TABLE IV
p-VALUES OF GOF TESTS FOR SAN FRANCISCO DATA SET

wide spread and fall into the region between the Kd and G0
d

distribution curves, occupied by the Ud distribution. The p
values of the composite GoF tests, computed from the complete
image samples and presented in Table III, show that neither
model is a very good fit to the image samples. All image
samples fail the sWC

d distribution test on the 5% level. They
all pass the Kd distribution test and the G0

d distribution test on
the 5% level, and the urban sample and vegetation A samples
also pass the 10% level by a small margin, but the highest p
value recorded is a modest 12.3%.

From the San Francisco subset in Fig. 10, we have extracted
a water sample (magenta square), a vegetation sample (cyan
square), and two urban samples, labeled A and B (orange and
indigo squares). The urban samples are distinguished by their
respective pink and green tinged tone. The green appearance of
the urban B sample occurs because the city blocks are aligned at
an angle to the radar, inducing a strong cross-polarized return
[39], which may be mistakenly interpreted as volume scatter-
ing. The MLC diagram reveals that both urban samples have
the same statistical texture properties. Their sample MLCs have
a large variance, and are located in the Ud distribution region,
characteristic of scattering from a mixture of urban objects.
The vegetation sample has moderate, but pronounced texture,
while the water sample is closer to the sWC

d distribution. The
p values in Table IV gives the judgement of the GoF tests: The
sWC

d distribution in a bad fit. The Kd distribution hypothesis is
passed by the water sample on the 5% level, and by the urban
samples on the 10% level. The G0

d distribution hypothesis is
passed by all samples, but only at the 5% level.

The image samples selected from the Oberpfaffenhofen sub-
set in Fig. 11 are two vegetation samples, labeled A and B
(magenta and orange squares), an urban sample (indigo square),
and a water sample (cyan square). In the Pauli images, the
vegetation samples seem to be distinguished mainly by their
intensity. The MLC diagram shows that the vegetation B sample
has more texture than the vegetation A sample and that both are
located relatively close to the Kd distribution curve. The water
sample appears to be close to the sWC

d distribution, while the
urban sample MLCs lie in the Ud distribution region. The p
values in Table V show that only the water sample passes the
sWC

d distribution test at the 5% level. The vegetation B and
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TABLE V
p VALUES OF GOF TESTS FOR OBERPFAFFENHOFEN DATA SET

water samples pass the Kd distribution test at the 5% level and
the urban sample at the 10% level. The urban and water samples
pass the G0

d distribution test at the 5% level, and the vegetation
B sample passes at the 10% level.

V. CONCLUSION

We have proposed GoF tests for composite matrix distribu-
tions derived under the multilook polarimetric product model.
These are based on a newly developed framework for statistical
analysis of polarimetric radar data, called matrix-variate MKS.
The test procedure can be applied to both simple and composite
hypotheses. We have tested them on simulated data for the
scaled Wishart distribution, the Kd distribution, and the G0

d

distribution. The simulations prove that the sampling distribu-
tion of the test statistic in the simple hypothesis case is well
approximated by the χ2 distribution for moderate sample sizes
and upward. In the composite hypothesis case, we must resort
to Monte Carlo simulations to find the sampling distribution for
the test statistic. This approach has a higher computational cost
but produces the true sampling distribution regardless of the
sample size. Assessment of the test power proves that the tests
are useful contributions that provide a hitherto missing formal
procedure for model selection. Experiments with real data from
the Radarsat-2 C-band instrument demonstrate the utility of the
tests.

APPENDIX A
MOMENT AND CUMULANT RELATIONS

This appendix provides explicit expressions for conversion
between moments and cumulants, which is needed in the com-
putations of the MLC-based GoF tests. It also presents covari-
ance matrices of the sample moments and sample cumulants
and relations between them. The transformations are valid for
all kinds of moments and cumulants, only requiring that the
cumulant-generating function is the logarithm of the moment
generating function.

The first six moment-to-cumulant transformations are

κ1 =μ1 (57)

κ2 =μ2 − μ2
1 (58)

κ3 =μ3 − 3μ1μ2 + 2μ3
1 (59)

κ4 =μ4 − 4μ1μ3 − 3μ2
2 + 12μ2

1μ2 − 6μ4
1 (60)

κ5 =μ5 − 5μ1μ4 − 10μ2μ3 + 20μ2
1μ3 + 30μ1μ

2
2

− 60μ3
1μ2 + 24μ5

1 (61)

κ6 =μ6 − 6μ1μ5 − 15μ2μ4 + 30μ2
1μ4 − 10μ2

3

+ 120μ1μ2μ3 − 120μ3
1μ3 + 30μ3

2 − 270μ2
1μ

2
2

+ 360μ4
1μ2 − 120μ6

1. (62)

The first eight cumulant-to-moment transformations are

μ1 =κ1 (63)

μ2 =κ2 + κ2
1 (64)

μ3 =κ3 + 3κ2κ1 + κ3
1 (65)

μ4 =κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 (66)

μ5 =κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ
2
1 + 15κ2

2κ1

+ 10κ2κ
3
1 + κ5

1 (67)

μ6 =κ6 + 6κ5κ1 + 15κ4κ2 + 15κ4κ
2
1 + 10κ2

3 + 60κ3κ2κ1

+ 20κ3κ
3
1 + 15κ3

2 + 45κ2
2κ

2
1 + 15κ2κ

4
1 + κ6

1 (68)

μ7 =κ7 + 7κ6κ1 + 21κ5κ2 + 21κ5κ
2
1 + 35κ4κ3

+ 105κ4κ2κ1 + 35κ4κ
3
1 + 70κ2

3κ1 + 105κ3κ
2
2

+ 210κ3κ2κ
2
1 + 35κ3κ

4
1 + 105κ3

2κ1 + 105κ2
2κ

3
1

+ 21κ2κ
5
1 + κ7

1 (69)

μ8 =κ8 + 8κ7κ1 + 28κ6κ2 + 28κ6κ
2
1 + 56κ5κ3

+ 168κ5κ2κ1 + 56κ5κ
3
1 + 35κ2

4 + 280κ4κ3κ1

+ 210κ4κ
2
2 + 420κ4κ2κ

2
1 + 70κ4κ

4
1

+ 280κ2
3κ2 + 280κ2

3κ
2
1 + 840κ3κ

2
2κ1 + 560κ3κ2κ

3
1

+ 56κ3κ
5
1 + 105κ4

2 + 420κ3
2κ

2
1 + 210κ2

2κ
4
1

+ 28κ2κ
6
1 + κ8

1. (70)

Recall that M4 and K4 were defined as the co-
variance matrices of the sample moment vector 〈μ4〉 =
[〈μ1〉, 〈μ2〉, 〈μ3〉, 〈μ4〉]T and the sample cumulant vec-
tor 〈κ4〉 = [〈κ1〉, 〈κ2〉, 〈κ3〉, 〈κ4〉]T, respectively. These are
related by

K4 = J4M4J
T
4 (71)

with the fourth-order Jacobian matrix of the moment-to-
cumulant transformations given by

J4 =

⎡⎢⎣
1 0 0 0

−2μ1 1 0 0
−3

(
μ2 − 2μ2

1

)
−3μ1 1 0

J41 J42 −4μ1 1

⎤⎥⎦ (72)

where

J41 = − 4
(
μ3 − 6μ1μ2 + 6μ3

1

)
(73)

J42 = − 6
(
μ2 − 2μ2

1

)
. (74)

Explicit expressions for the elements of the sample moment
covariance matrix are given as

[M]11 =κ2 (75)

[M]12 =κ3+2κ1κ2 (76)

[M]13 =κ4+3κ1κ3+3κ2
2+3κ2

1κ2 (77)

[M]14 =κ5+4κ1κ4+10κ2κ3+6κ2
1κ3+12κ1κ

2
2+4κ3

1κ2

(78)

[M]22 =κ4+4κ1κ3+2κ2
2+4κ2

1κ2 (79)
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[M]23 =κ5+5κ1κ4+9κ2κ3+9κ2
1κ3+12κ1κ

2
2+6κ3

1κ2

(80)

[M]24 =κ6+6κ1κ5+14κ2κ4+14κ2
1κ4+10κ2

3

+56κ1κ2κ3+16κ3
1κ3+12κ3

2+36κ2
1κ

2
2+8κ4

1κ2

(81)

[M]33 =κ6+6κ1κ5+15κ2κ4+15κ2
1κ4+9κ2

3

+54κ1κ2κ3+18κ3
1κ3+15κ3

2+36κ2
1κ

2
2+9κ4

1κ2

(82)

[M]34 =κ7+7κ1κ6+21κ2κ5+21κ2
1κ6+34κ3κ4

+102κ1κ2κ4+34κ3
1κ4+66κ1κ

2
3+102κ2

2κ3

+192κ2
1κ2κ3+30κ4

1κ3+96κ1κ
3
2+84κ3

1κ
2
2

+12κ5
1κ2+κ7

1 (83)

[M]44 =κ8+8κ1κ7+28κ2κ6+28κ2
1κ6+56κ3κ5

+168κ1κ2κ5+56κ3
1κ5+34κ2

4+272κ1κ3κ4

+204κ2
2κ4+408κ2

1κ2κ4+68κ4
1κ4+280κ2κ

2
3

+264κ2
1κ

2
3+816κ1κ

2
2κ3+512κ3

1κ2κ3+48κ5
1κ3

+96κ4
2+384κ2

1κ
3
2+168κ4

1κ
2
2+16κ6

1κ2+κ8
1. (84)

The sample cumulant covariance matrix becomes

K4 =

⎡⎢⎣
κ2 κ3 κ4 κ5

κ3 κ4 + 2κ2
2 κ5 + 6κ2κ3 K24

κ4 κ5 + 6κ2κ3 K33 K34

κ5 K42 K43 K44

⎤⎥⎦ (85)

where

K24 =K42 = κ6 + 8κ2κ4 + 6κ2
3 (86)

K33 =κ6 + 9κ2κ4 + 9κ2
3 + 6κ3

2 (87)

K34 =K43 = κ7 + 12κ2κ5 + 30κ3κ4 + 36κ2
2κ3 (88)

K44 =κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2
4 + 72κ2

2κ4

+ 144κ2κ
2
3 + 24κ4

2. (89)
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