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ABSTRACT

A clustering method that combines an advanced statis-
tical distribution with spatial contextual information is
proposed for multilook polarimetric synthetic aperture
radar (PolSAR) data. It is based on a Markov random
field (MRF) model that integrates a K-Wishart distribu-
tion for the PolSAR data statistics conditioned to each
image cluster and a Potts model for the spatial context.
Specifically, the proposed algorithm is constructed based
upon the expectation maximization (EM) algorithm. A
new formulation of EM is developed to jointly address
parameter estimation in the K-Wishart distribution and
the spatial context model, and also minimization of the
energy function. Experiments are presented with simu-
lated and real quad-pol L-band data.
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1. INTRODUCTION

Polarimetric SAR (PolSAR) data are complex multi-
dimensional image data, which can be analyzed adopting
several processing schemes. In the literature, we find that
much emphasis has been put on analysis based on target
decomposition theorems. Through this approach, infor-
mation about scattering mechanisms can be gained. The
knowledge of the exact statistical properties of PolSAR
data founds the basis for another strategy of multidimen-
sional image analysis, which in some cases is comple-
mentary to the target decomposition approach.

Analysis of real SAR images often reveals that non-
Gaussian models give better representation of the data,
compared to complex Gaussian distributions, implying
that processing algorithms based on non-Gaussian statis-
tics should improve performance. The doubly stochas-
tic product model has been widely used in non-Gaussian
modeling, processing, and analysis of single- and multi-
PolSAR images. The model states that, under certain
conditions, the complex-valued scattering vector results
as the product of two independent random variables: a
circular complex multinormal speckle noise component

and a real scalar texture component. Several distributions
could be used to model SAR image texture with different
spatial correlation properties and various degrees of in-
homogeneity [1, 2]. Statistical properties are widely used
for image segmentation and land cover classification of
PolSAR data (e.g., [1]).

This paper addresses the problem of contextual polari-
metric SAR image clustering by combining advanced sta-
tistical modeling and MRFs. Polarimetric SAR image
segmentation is commonly performed with the Gaussian-
based Wishart clustering algorithm operating on a pixel-
by-pixel basis [3]. In this study, we use the more ad-
vanced non-Gaussian K-Wishart clustering algorithm [1],
that additionally accounts for potential textural differ-
ences in the classes, to represent the individual pixel-
wise statistical properties, and integrate contextual in-
formation of the associated image data in the analysis
process by MRF modeling [4]. MRFs represent a gen-
eral family of stochastic models that allow both contex-
tual information and further information sources [4] to
be integrated in Bayesian image processing by formulat-
ing the maximum a-posteriori (MAP) decision rule as the
minimization of suitable energy functions. MRF mod-
els have been used in remote-sensing to address many
image-analysis problems, including (supervised and un-
supervised) classification, segmentation, texture extrac-
tion, denoising, and change detection (see, e.g., [4, 5, 6]).

The proposed contextual clustering method uses a
Markovian energy function that integrates a K-Wishart
model for the PolSAR data statistics conditioned to each
image cluster and an MRF model for the spatial context.
Specifically, the proposed algorithm is constructed based
upon the expectation maximization (EM) algorithm [7].
EM is an iterative parameter estimation technique, devel-
oped for parametric-modeling problems characterized by
data incompleteness and converging to a local, at least,
maximum of the log-likelihood function [7, 8]. Here, a
novel formulation of EM is developed to jointly address
both parameter estimation and minimization of the en-
ergy function. The resulting algorithm works in an iter-
ative manner where, in each iteration, the current cluster
parameter estimates are used to segment the image, and
the new segments are used to recompute the cluster pa-
rameters.



2. PIXEL-WISE STATISTICAL ANALYSIS

After multi-looking, each pixel is represented by C, the
multi-look complex (MLC) covariance matrix of the scat-
tering vector. The non-Gaussian product model describes
C as the product of a texture term and a Wishart dis-
tributed speckle term [2]. Assuming that the texture has
higher spatial correlation than the speckle over small lo-
cal neighborhoods, the doubly stochastic product model
for multilook PolSAR data is given by:

C = TW; W ∼ WC
d (L,Σ). (1)

where d is the dimension of the scattering vector, T
and W model texture and speckle, respectively and
WC
d (L,Σ) denotes the scaled complex Wishart distri-

bution with parameters L, the number of looks, and
Σ = E{C} [10]. The non-Gaussian nature of the prod-
uct model depends on the specific model for the scalar
texture variable T [2].

2.1. K-Wishart distribution
If the texture term of the product model is given by
the gamma distribution with probability density function
(PDF) given by
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with shape parameter α > 0 and unit mean value µ =
E{T} = 1. Then the marginal distribution for C may
be obtained by integrating the conditional PDF over the
prior distribution of T , that is

pC(C) =

∫ ∞
0

pC|T (C|t)pT (t)dt; C|T ∼ WC
d (L,Σ).

(3)
The resulting distribution is known as the K-Wishart dis-
tribution [1] and in closed form is:
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where tr(·) and | · | denote the trace operation and deter-
minant, respectively, I(L, d) is a normalization constant,
and Kn(·) is the modified Bessel function of the second
kind with order n. Note that the PDF is parametrized by
the shape parameter α, the number of looks L and the
scale matrix Σ.

Instead of calculating Maximum Likelihood (ML) esti-
mates of the gamma distribution texture parameter, the
method of matrix log-cumulants (MoMLC) is adopted,
which have been proved to be a feasible and effective
estimation technique and relies on the properties of the
Mellin transform. The matrix log-cumulant equations of
the K-Wishart distribution are [9]:

κ1(C) = ln |Σ|+ ψ0
d(L) + d

(
ψ0(α)− ln(αL)

)
(5)

κν(C) = ψν−1
d (L) + dνψν−1(α), ν > 1 (6)

where ν is the matrix log-cumulant order, whereas
ψνd (·) and ψν(·) are the multivariate and the ordinary
polygamma function, respectively [9].

3. MARKOVIAN FUSION APPROACH

In order to include the contextual information disregarded
by the pixel-wise EM technique and to gain robustness
against speckle, we adopt an MRF model which generally
allows contextual and further information sources to be
integrated in Bayesian image processing. This is done
by a MAP decision rule as the minimization of suitable
energy functions [5]. As a consequence, an MRF can be
applied to model the prior distribution of the class labels,
and a mixture of K-Wishart distributions is used to model
the class-conditional PDF for the PolSAR data statistics.

3.1. Markov Random Field model
Let S = {s = (i, j); 1 ≤ i ≤ M, 1 ≤ j ≤ N} and K
denote the pixel lattice and the set of all possible labels in
the clustering map, respectively. Therefore, a label ran-
dom field Ω = {ωs, ωs ∈ K, s ∈ S} defined on the S can
be treated as an MRF with a given neighborhood system
if the Markovian property holds for each site s [8]. We
introduce an isotropic second-order neighborhood system
and the related set of pairwise cliques. For each site, the
neighbors are the eight surrounding pixels [4]. According
to the Hammersley-Clifford theorem, the joint probabil-
ity distribution of a Markov field is a Gibbs distribution
[8]. Therefore, the PDF of Ω has the form

PΩ(ω) = Z−1 exp [−U(ω)] = Z−1 exp

[
−
∑
c

Vc(ωc)

]
(7)

where U(ω) and Vc(ωc) are called Markov energy func-
tion of class labels and potential function, respectively; Z
is the normalizing constant; and c indicates a clique of a
neighborhood system. Consequently, local spatial corre-
lations in Ω can be modeled by defining suitable potential
functions Vc. According to the assumption of isotropy,
there is a single MRF model parameter which is known
as the spatial interaction parameter of the pairwise cliques
and the potential can therefore be simplified to [4, 8]

Vc(ωs, ωN(s)) =

{
−β if ωs = ωN(s)

0 otherwise (8)

where N(s) is the neighborhood of the s ∈ S.

4. K-WISHART MRF CLASSIFIER

Image segmentation involves observed data and unob-
served data to be recovered. In the case of hidden MRFs,
the unobserved class labels ω are modeled as an MRF, as
defined in (7) with the energy function U depending on a
parameter β [8]. The observed MLC image can therefore



be described by a mixture of K-Wishart distributions and
are assumed to be conditionally independent given ω:

PC|Ω(C|ω; θ) = exp

[∑
s∈S

log KW(Cs|ωs;α,Σ)

]
(9)

In order to develop the K-Wishart MRF classifier us-
ing the MAP criterion, we need to obtain the conditional
probability mass function (PMF) of the label random field
ω given the observed field C, in terms of the Bayesian
rule, which can be formulated as

PΩ|C(ω|C; θ, β) ∝ PC|Ω(C|ω; θ)PΩ(ω|β), (10)

where θ = {α,Σ} is defined as the vecor of the param-
eters of the K-Wishart distribution; PΩ and PΩ|C are the
prior PMF of the class labels and the posterior probability
of class membership, i.e., the probability that C belongs
to ω given the observation C, respectively. To model
the joint prior probability PΩ, an MRF model is applied.
Using the pseudo-likelihood defined in [8], the complete
likelihood is given by

P (C, ω|θ, β) ≈
∏
s∈S

KW(Cs|ωs; θ)PΩ(ωs|ωN(s);β)

(11)
Therefore, the conditional field ω given C is a Markov

field (just as ω) and its posterior energy is

U(ω|C; θ, β) = U(ω|β)−
∑
s∈S

log KW(Cs|ωs; θ) (12)

Thus, the MAP estimate which maximize the posterior
probability P (ω|C; θ, β) is equivalent to minimizing the
posterior energy. The K-Wishart MRF clustering algo-
rithm consists of the following processing stages:

(1) Non-contextual step: this step generates an initial non-
contextual clustering map by applying the unsupervised
K-Wishart classifier. Unsupervised segmentation of C
matrices is achieved using an expectation-maximization
(EM) approach. The standard EM-algorithm consists
of an E-step that estimates class likelihoods using K-
Wishart distribution and an M-step that updates all class
parameters [7]. The final class partition has k classes with
associated K-Wishart parameters for each class.

(2) MRF step: Under the assumption of the indepen-
dency of the covariance matrices and finite mixture of K-
Wishart distributions in the PolSAR image, the EM algo-
rithm is applied to the described MRF model. The mode-
field formulation of EM is used, that represents an ap-
proximation in the related likelihood function and makes
EM computationally affordable also in the application to
contextual models [8]. At the convergence of the EM, the
final segmentation is obtained.

5. EXPERIMENTAL RESULTS

The non-Gaussian K-Wishart classifier was adopted for
a test image with eight classes that are generated with

eight-look, dual-pol K-Wishart distributed data. The po-
larimetric matrix and texture parameters are taken from
a real data-set to simulate classes with properties of the
real image. To initialize the expectation maximization
process, each observation is assigned randomly to one of
eight classes. The K-Wishart PDF is dependent on the
number of looks L which are assumed to be independent.
Because of existing some correlation between image pix-
els in real data, actual number of correlated looks need to
be substituted with effective number of independent looks
(ENL) to fit the data. We incorporate ENL estimation in
the EM algorithm [10]. The K-Wishart MAP classifier
already provides good classification performances in the
non-contextual step, with accuracies higher than 75% for
all the classes and overall accuracy of 91%. Even though
the considered operational setting is unsupervised, such
a quantitative accuracy analysis is feasible for this data-
set, since the true label of each pixel is known by def-
inition. As expected, classification results appear noisy
due to insufficient speckle filtering, but the contextual K-
Wishart MRF classifier further improved the result, yield-
ing a 8% increase in the overall accuracy and accuracies
higher than 98% for all the classes. The classification
result can be seen for the simulated data in Fig. 1. As
a second experiment, the image of an agricultural area
from an airborne EMISAR, L-band, quad-pol SAR flight
over Foulum Denmark in 1998 is tested. The appropriate
number of classes for this real dat-set is automatically de-
termined by goodness-of-fit testing of each class model
to the data samples [10] and this gives a different num-
ber of classes depending on the constraints of the cho-
sen model. The standard-Wishart classifier was adopted
for the image and Fig. 2 shows the result and improve-
ment of the clustering by standard-Wishart MRF classi-
fier. For this textured image, standard-Wishart is not a
good selection and K-Wishart can better model the data.
So K-Wishart classifier was chosen and Fig. 3 shows the
classification result. As it is seen from Fig. 2 and Fig.
3, the standard-Wishart classifiers gives us 34 classes,
whereas K-Wishart classifier found 18 classes for this
data. Since the standard-Wishart has difficulty in group-
ing the highly non-Gaussian classes into single groups, it
fits more Gaussian-constrained distributions to the non-
Gaussian data classes. A relevant improvement in spa-
tial regularity, accuracy and a strong smoothing of ho-
mogeneous areas is visually evident when incorporating
MRFs, while class boundaries and point targets are pre-
served in the contextual clustering.

6. CONCLUSIONS

In this paper, a novel unsupervised clustering algorithm
for PolSAR imagery has been developed by combining
the MRF approach to Baysian image classifier and a finite
mixture technique for PDF estimation, which is designed
to yield homogeneous classification results. We tested
the proposed algorithm over two examples and showed
the classification accuracies before and after applying
MRFs. The results shows improvement on segmenta-
tion of pixel-wise K-Wishart clustering. The accuracy
of the proposed algorithm was validated on the simulated



Figure 1. Quasi-Pauli (dual-pol) RGB image (top) and
non-contextual (left bottom) and contextual (right bot-
tom) K-Wishart clustering of simulated test pattern.

Figure 2. Pauli RGB image (top) and standard Wishart
non-contextual (middle) and contextual clustering of
Foulum dataset, eight-looks, 34 classes found.

test pattern and quad-pol SAR images of Foulum Den-
mark. In both cases, the effectiveness of MRF models in
improving the accuracy of PolSAR image clustering has
been experimentally remarked. Future developments of
this study will include extending the MRF modeling to
change detection applications with PolSAR data.

Figure 3. Non-contextual (top) and contextual (bottom)
K-Wishart clustering of Foulum dataset, 18 classes found.
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