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ABSTRACT

In this paper we demonstrate that simple yet flexible mod-
elling of multilook polarimetric synthetic aperture radar
(PolSAR) data can be obtained through a relaxation of the
Wishart model. The degrees of freedom of the complex
Wishart distribution is treated as a spatially nonstation-
ary parameter, which is allowed to vary between thematic
classes and segments of the PolSAR scene.
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1. INTRODUCTION

The Wishart distribution is the de facto statistical model
for multilook PolSAR data. It is based on the assumption
that the complex scattering coefficients are jointly circu-
lar Gaussian. However, this is only satisfied for homo-
geneous areas with fully developed speckle and no tex-
ture, which renders the model inadequate in many cases.
Improved modelling is achieved by using more complex
models that account for texture, such as the polarimetric
G distribution family [1], with the polarimetric K distri-
bution [2] as a special case. These models allow for bet-
ter adaption to data whose distribution is heavy-tailed and
non-Gaussian, but this comes at the cost of higher math-
ematical complexity.

The comparatively higher mathematical tractability of
the Wishart distribution motivates us to pursue a relaxed
Wishart model as an alternative. In the context of multi-
look PolSAR data, the degrees of freedom of the Wishart
distribution is interpreted as the equivalent number of
looks, a constant, global value that quantifies the effec-
tive number of data samples averaged in the multilooking
process. In contrast, we treat it as a free parameter, which
varies between, and possibly also within, classes and seg-
ments of the PolSAR scene. This reflects the highly vari-
able degree of smoothing imposed on the data by non-
linear speckle filters. The choice can also be justified by
looking at the degrees of freedom as a shape parameter
of the distribution, which is determined not only by the
degree of averaging, but also by texture. Thus, the in-
fluence of multilooking, speckle filtering, and texture is

assimilated into one parameter, which can be estimated
efficiently with a recently proposed estimator [3, 4]

Sec. 2 reviews some existing density models for multi-
look PolSAR data and proposes the relaxed Wishart dis-
tribution as an alternative. In Sec. 3 we derive certain
matrix moments that are used to illustrate the adaptivity
of the different density models, and as a new domain for
visual goodness-of-fit assessment. Sec. 4 presents exper-
iments with airborne NASA/JPL AIRSAR data, and in
Sec. 5 we give our conclusions.

2. STATISTICAL MODELLING

The full-polarimetric SAR instrument separately trans-
mits orthogonally polarised microwaves pulses, and mea-
sures orthogonal components of the received signal. For
each pixel, the measurements result in a matrix of scat-
tering coefficients. These are complex-valued, dimen-
sionless numbers that describe the transformation of the
transmitted (incoming) electromagnetic (EM) field to the
received (backscattered) EM field for all combinations of
transmit and receive polarisation.

The transformation can be expressed as�
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where k denotes wavenumber and r is the distance be-
tween radar and target. The subscript of the EM field
components Eji denotes horizontal (h) or vertical (v) po-
larisation, which is the most common set of orthogonal
polarisations, while the superscript indicates transmitted
(t) or received (r) wave. The scattering coefficients Sij
are subscripted with the associated receive and transmit
polarisation, in that order. Together, they form the scat-
tering matrix, denoted S � rSijs.
The scattering matrix can be reduced to one of the vectors
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The lexicographic scattering vector, denoted s, is the vec-
torised version of S after the cross-polarisation terms Shv



and Svh have been averaged, assuming reciprocity of the
target. The scaling with a factor

?
2 is done to preserve

total power of the signal. The Pauli basis scattering vec-
tor, denoted k, is a linear transformation of s, which pro-
vides physical interpretations of its elements in terms of
basic scattering mechanisms [5].

2.1. Gaussian Model

It is commonly assumed that the scattering vector ele-
ments are jointly circular complex Gaussian, even though
this model only encompasses variability due to speckle,
and not texture, which is discussed in the Sec. 2.2. The
matrix S and the vectors s and k are single-look complex
format representations of PolSAR data. The following
derivations shall use s as the scattering vector, but would
be equivalent for k.

Multilook PolSAR data is commonly represented by

C � 1
L

Ļ

i�1

sisHi , (3)

known as the sample covariance matrix. It is formed
as the mean Hermitian outer product of the single-look
scattering vectors tsiuLi�1, where L is the nominal num-
ber of looks. The superscript H means complex conju-
gate transpose. Assume that s is zero mean and circular
complex multivariate Gaussian, denoted s � NC

d p0,Σq,
where 0 is a column vector of zeros, d is the dimension
of s, and Σ � EtssHu is the covariance matrix of s. The
probability density function (pdf) of s is thus

psps; Σq � 1
πd|Σ| expp�sHΣ�1sq , (4)

where | � | is the determinant operator. It follows that if
L ¥ d and the si in (3) are independent, then C follows
the nonsingular complex Wishart distribution [6]:

pwpC;L,Σq

� LLd|C|L�d
|Σ|LΓdpLq exp

��L tr
�
Σ�1C

��
,

(5)

where trp�q is the trace operator. The normalisation con-
stant ΓdpLq is the multivariate Gamma function, defined
as

ΓdpLq � πdpd�1q{2
d�1¹
i�0

ΓpL� iq , (6)

where ΓpLq is the standard Euler gamma function. In
reality, the si are correlated, and this is compensated for
by replacing L with an equivalent number of looks, Le ¥
L, in order to obtain consistency between moments of the
theoretical model and sample moments of the data. This
approximation provides a good model for the distribution
of C, denoted C �WC

d pLe,Σq.

2.2. Product Model

In addition to speckle, the randomness of a SAR mea-
surement can also be attributed to texture. The notion
of texture represents the natural spatial variation of the
radar cross section, which is generally not perfectly ho-
mogeneous for pixels that are thematically mapped as one
class. Several statistical models exist that incorporate
texture, either by assuming statistics that imply a non-
Gaussian scattering vector, or explicitly modelling tex-
ture as a separate random variable (rv). The latter case
leads to a doubly stochastic model with a compounded
distribution.

The well known product model, reviewed in [7, 8, 9], is
shown to be both mathematically tractable and success-
ful for modelling purposes. In the multilook polarimet-
ric version [1], the polarimetric covariance matrix C is
decomposed as a product of two independent stochastic
processes with individual distributions:

C � zW . (7)

One process, W � WC
d pLe,Σq, models speckle. The

other process generates texture, represented by the scalar
rv z P R�, under the assumption that texture is inde-
pendent of polarisation. The pdf of C depends on the
distribution of z, which is normalised to unit mean.

Gamma Distributed Texture

The first covariance matrix distribution derived from the
product model used the gamma distribution to model z
[2]. A gamma distributed rv z ¡ 0 has density

pzpz;α, µq �
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with shape parameter α ¡ 0 and mean value µ � Etzu ¡
0. This is denoted z � Gpα, µq. The unitary mean texture
rv is thus z � Gpα, 1q. This leads to the matrix-variate K
distribution for C [1, 2]:

pCpC;Le,Σ, αq

� 2|C|Le�dpLeαqα�Led2

|Σ|LeΓdpLeqΓpαq
�

trpΣ�1Cq�α�Led2

�Kα�Led

�
2
b
Leα trpΣ�1Cq� .

(9)

Knp�q is the modified Bessel function of the second kind
with order n. See [1, 10] for a detailed derivation.

Inverse Gamma Distributed Texture

The family of generalised inverse Gaussian distributions
was proposed in [1] as a model for z. The gamma distri-
bution is one special case. The inverse gamma distribu-
tion is another, which has been promoted in particular as
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Figure 1. Examples of single intensity marginal densities for a polarimetric covariance matrix modelled by the relaxed
Wishart distribution (left), matrix-variate K distribution (middle), and matrix-variate G0 distribution (right).
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Figure 2. Same as Fig. 1 with logarithmic second axis to emphasize differences at the tails.

a good model for strongly heterogeneous clutter [1, 11].
Its pdf is given by

pzpz;λ, νq � pλνqλ z
�λ�1

Γpλq exp
�
�λν
z



. (10)

This is denoted z � G�1pλ, ν), with shape parameter
λ ¡ 0 and ν ¡ 0. The normalised texture rv becomes
z � G�1pλ, pλ�1q{λq, which leads to the matrix-variate
G0 distribution for C [1]:

pCpC;Le,Σ, λq

� LLede |C|Le�d
|Σ|Le

ΓpLed� λqpλ� 1qλ
ΓdpLeqΓpλq

� �Le trpΣ�1Cq � λ� 1
��λ�Led

.

(11)

For interpretation purposes, we note that zÑ 1 and the
distributions in Eqs. (9) and (11) converge in distribution
to the complex Wishart distribution in Eq. (5) as α Ñ
8 and λ Ñ 8, respectively. Thus, high values of α
and λ imply little texture, whereas low values refer to
significant texture and non-Gaussianity.

2.3. Relaxed Wishart Model

The standard Wishart model in Eq. (5) is parametrised
by a constant Le, which is estimated for the data set as
a whole [3, 4]. We introduce a relaxed Wishart (RW)
model, whose functional form is identical. The differ-
ence is that Le is replaced with a variable shape param-

eter, L ¤ Le. Depending on the application, L is al-
lowed to vary between classes (classification), segments
(segmentation), or pixels (e.g., change detection). The
new distribution is denoted by C � RWC

d pL ,Σq.

The motivation for this approach is explained by Fig. 1.
It is not possible to visualise the effect of the distribution
parameters directly on the pdfs in Eqs. (5), (9), and (11).
We therefore plot their marginial densities for a single po-
larisation intensity. The respective marginals are gamma
distributed, KI distributed, and G0

I distributed. For the
latter two, the superscripted I denotes the multilook in-
tensity version of the given distribution family.

In all the plots, the continuous curve represents the lim-
iting case defined by the standard Wishart model, with
a gamma distributed marginal pdf. In the left panel, the
dashed curves show the evolution of the pdf under the
RW model as L is lowered from the limit of L � Le.
The same evolution is illustrated for the K distribution
(middle panel) and the G0 distribution (right panel) for
decreasing values of the respective texture parameters, α
and λ. We observe that the effect of varying L resem-
bles that induced by α and λ, even though a greater varia-
tion in shape is possible for the distributions based on the
product model. Fig. 2 uses a logarithmic scale to high-
light the heavy tails of the K and G0 distribution., which
is less prominent for the marginal pdf of the RW distri-
bution. We still conclude that L can be interpreted as a
texture parameter alongside α and λ. Thus, the RW dis-
tribution implicitly models texture up to a moderate level.



3. GOODNESS-OF-FIT EVALUATION

This section discusses evaluation of the goodness-of-fit
(GoF) for the matrix-variate density models of multilook
PolSAR data. GoF testing in the literature has been lim-
ited to visual inspection of how well marginal densities
of intensity fit histograms of the data. Classical statistical
distribution tests, such as the Kolmogorov-Smirnov test
or the Anderson-Darling test, are impractical in this case.
As noted in [1], this is because they require binning of
the domain of C, which is the cone of positive definite
matrices.

We here propose an alternative space where GoF eval-
uation can be performed. The idea is that GoF can be
assessed by comparing theoretical moments of the mod-
els with sample moments computed from the data. We
first define a new kind of matrix moments, that we call
log-determinant cumulants. Closed form expressions for
the candidate models are then derived. These are seen to
have favourable properties that can be utilised to visualise
the texture modelling capabilities of the models.

3.1. Log-determinant Cumulants

The following derivation is based on the application of
second kind statistics, following the terminology intro-
duced in [12]. Whereas the commonly known charac-
teristic function is defined as the Fourier transform of a
pdf, the second kind characteristic function is the Mellin
transform of the pdf. This function can be used to gen-
erate moments and cumulants of the second kind, also
termed log-moments and log-cumulants.

Let ξ be a real, positive rv with pdf pξpξq. Start by defin-
ing the rth-order log-moment of ξ as

mrpξq � Etpln ξqru � drφξpsq
dsr

����
s�1

, (12)

where φξpsq is the Mellin transform of pξpξq and s P C
[12]. Then define the rth-order log-cumulant of ξ as

κrpξq � drψξpsq
dsr

����
s�1

, (13)

where ψξpsq � lnφξpsq. Relations between some low-
order log-moments and log-cumulants are given by

κ1 � m1 , (14)
κ2 � m2 �m2

1 , (15)

κ3 � m3 � 3m1m2 � 2m3
1 . (16)

It follows from a fundamental property of the Mellin
transform [12] that for a product of independent random
variables, ξ � ρ � ζ, with ρ, ζ ¡ 0:

κrpξq � κrpρq � κrpζq , @r P N . (17)

This equips us to derive the log-cumulant of |C|, which
will be referred to as the log-determinant cumulant
(LDC) of C.

Note that |C| � |zW| � zd|W|. Thus,

κrp|C|q � drκrpzq � κrp|W|q . (18)

The log-cumulants of z have been derived in [12]. For
z � Gpα, µq it was shown that

κ1pzq � ln
�µ
α

	
� Ψp0qpαq , (19)

κrpzq � Ψpr�1qpαq , r ¡ 1 , (20)

where Ψprqpzq is Euler’s polygamma function of order r.
The log-cumulants of z � G�1pλ, νq were found as

κ1pzq � lnλν � Ψp0qpλq , (21)

κrpzq � p�1qr Ψpr�1qpλq . (22)

The LDCs of the Wishart distributed W can be deduced
from results found in [3, 4] as

κ1p|W|q � ln |Σ| �
d�1̧

i�0

Ψp0qpLe � iq � d lnLe(23)

κrp|W|q �
d�1̧

i�0

Ψpr�1qpLe � iq , r ¡ 1 . (24)

This completes the expression in Eq. (18) for our candi-
date models.

3.2. Log-determinant Cumulant Diagram

Note that the LDCs are matrix-variate generalisation of
the log-cumulants derived in [12] for the single polarisa-
tion product model. As in the one-dimensional case, we
can utilise the fact the LDCs do not depend on the scale
parameter Σ for r ¡ 1. More specifically, the κr¡1p|C|q
depend only on the texture parameters:

κWr¡1p|C|q �
d�1̧

i�0

Ψpr�1qpLe�iq (25)

κKr¡1p|C|q � drΨpr�1qpαq �
d�1̧

i�0

Ψpr�1qpLe�iq (26)

κG
0

r¡1p|C|q � p�dqrΨpr�1qpλq �
d�1̧

i�0

Ψpr�1qpLe�iq (27)

κRWr¡1p|C|q �
d�1̧

i�0

Ψpr�1qpL �iq , (28)

where the superscript of κ indicates which model the ex-
pression describes.

By plotting two LDCs of different orders against each
other, we obtain a curve in LDC space which depicts the



paired LDC values that can be attained under a given
model. We refer to this as an LDC diagram. Sample
LDCs calculated from data can be overlaid the model
curves, and the diagram used to assess how well the data
are described by different models, and which model pro-
vides the best fit. Diagrams of second and third order
log-cumulants were plotted in [12, 13], and we will use
the same orders for our LDC diagrams. Remark that the
bias and variance of the sample LDCs are expected to in-
crease rapidly with order.

4. EXPERIMENTS

4.1. Marginal Densities of Intensity

We have extracted three test samples from an L-band
quadrature polarisation image aquired by the airborne
NASA/JPL AIRSAR sensor over Flevoland, the Nether-
lands, in August 1989. The samples are taken from some
of the more textured areas in the image. One is from a for-
est area and the other two from different crops. Marginal
densities of the intensity in the HH, HV, and VV channels
for the forest sample are shown in Fig. 3. These densities
describe unfiltered data. Fig. 4 describes the same data
after they have been filtered with a refined Lee filter [14]
of window size 7�7.

The first observation is that the data are well described by
all the models in Fig. 3. By zooming in on the densities, it
may be concluded by visual inspection that the K model
provides the best fit, followed by the RW model. The
ENL estimated for the data set, and used to parametrise
the standard Wishart, K, and G0 model, is Le�3.3. This
constant is replaced with L � 2.53 for the RW model.
The texture parameters α and λ are estimated with the
method described for the K distribution in [10].

Fig. 4 shows that the models have very different GoF for
speckle filtered data. The Wishart model is the worst fit,
and none of the distributions based on the product model
produce an adequate result either. Only the KW model
seems to do a good job. The ENL was estimated to Le�
48, and is reduced to L � 27 for the RW model. The
marginal densities of the other two test samples yield very
similar results, both before and after speckle filtering, and
are therefore not shown.

4.2. Log-determinant Cumulant Diagrams

Fig. 5 shows a LDC diagram where κ3p|C|q is plotted
against κ2p|C|q, with analogy to the log-cumulant dia-
grams in [12, 13]. The Wishart model has no texture pa-
rameter, and its LDCs are therefore constant, equal to the
contribution κrp|W|q, r�1, 2 of the Wishart distributed
speckle matrix. These constants are indicated in the fig-
ure by the dotted lines, intersecting at the point which de-
scribes the Wishart model. The possible LDC pairs of the
K, G0, and RW models lie on a curve parametrised by

α, λ, and L , respectively. The asymptotic behaviour of
these curves, as the texture parameters decrease towards
their lower limits, is indicated on the figure. At the upper
limit, the curves all converge to the Wishart case. Sam-
ple LDCs of the three test samples are plotted as points in
green (forest), cyan, and magenta (two different crops).
We plot a collection of sample LDC estimates, obtained
by bootstrap sampling of the full test samples, in order
to illustrate the dispersion of the sample estimates. ENL
estimates for each test sample are shown in the figure.

Diagrams of data before and after speckle filtering are
presented in the left and right panel, respectively. For
the unfiltered data, the LDC diagram clearly indicates
that the RW distribution is the best model for the for-
est sample. The other test samples are less textured, and
all models are adequate. For the speckle filtered data, the
LDC diagram suggests that the RW model fits best for
the forest sample and the first crop sample (cyan), while
the K model performs best for the second crop sample
(magenta). For the crop samples, both the RW model
and theK model fit reasonably well. The Wishart and the
G0 model are inadequate in all cases. The LDC diagram
indicates good fit of the K model to the crop samples,
which is not compatible with observations of the marginal
densities (not shown). This prompts us to reconsider the
estimator for α (and λ) in future work.

The success of the RW distribution in modelling of
speckle filtered data, and the relative failure of the others,
can be explained by a discussion of the nature of adap-
tive speckle filters. Adaptive speckle filters apply vari-
able smoothing by consideration of local homogeneity.
Hence, the ENL is mapped from a constant value to a
dispersed range of values. This is not modelled appro-
priately, neither by the Wishart distribution nor the other
distributions based on the product model. The RW dis-
tribution, on the other hand, apparently represents a better
approach.

5. CONCLUSIONS

We have proposed a relaxed Wishart distribution where
the equivalent number of looks of the standard Wishart
model has been replaced by a varable shape parameter.
We have further derived the log-determinant cumulants
of the polarimetric covariance (or coherency) matrix un-
der the product model, and demonstrated how they can be
utilised in visual inspection of goodness-of-fit for matrix-
variate distributions. Experimental results show that for a
moderate level of texture, the newly proposed density can
compete with densities derived from the product model
with regards to modelling of unfiltered PolSAR data. For
data that are processed with an adaptive speckle filter, the
relaxed Wishart model is shown to perform better. Based
on the very promising results, we suggest that the relaxed
Wishart distribution should be tested more extensively on
other data sets and with different speckle filters. It should
also be applied to model-based classification, change de-
tection, and other image analysis tasks.
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Figure 3. Comparison of marginal densities of the Wishart, RW , K, and G0 distribution with data histograms for a
textured forest area in the AIRSAR L-band image of Flevoland. No speckle filter applied.
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Figure 4. Comparison of marginal densities of the Wishart, RW , K, and G0 distribution with data histograms for a
textured forest area in the AIRSAR L-band image of Flevoland. Modified Lee filter with window size 7 � 7 applied.
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