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Fig. 10. Results of iceberg detection within subsection from the archipelago Lovenøyane in Fig. 5. (Top to bottom row) September 23 and 25–27.
(a), (e), (i), and (m) Pauli Images. (b), (f), (j), and (n) Segmentation results produced by the segmentation processor. (c), (g), (k), and (o) Detection masks.
(d), (h), (l), and (p) Geometric brightness image with superimposed the centroids of the detected icebergs. White region: land.

The triangle shape on the northern part of Lovenøyane
in Fig. 5(b) likely presents thin sea ice. The low incidence
angles (24.6°–26.4°) of this scene cause increased backscatter
from open water compared with the other scenes, and hence,
we get a lower contrast between icebergs and open water.

The scene collected on April 19 is affected by higher wind,
which results in an increase of the ocean surface roughness,
and thus radar backscatter [see Fig. 5(c)]. On the same scene,
young fast sea ice along the eastern coast of the fjord is also
visible, where some small icebergs are embedded in sea ice.
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Fig. 11. Iceberg size distribution (area and length of object’s major axis) of automatically detected icebergs in the RS-2 data series.

The scene collected on April 20 [Fig. 5(d)] represents the
most challenging case, where different sea surface features
result in nonhomogeneous clutter. An obvious clutter transition
between different sea states is found across the scene. An area
of high iceberg density along the eastern coast of the fjord is
also observed. Mixture of sea ice and open water in the inner
part of fjord around Lovenøyane within the indicated the ROI
is also an explicit feature of the scene.

Fig. 6(a) and (d) demonstrates another common situation in
the outer part of the fjord, where the backscatter transitions
between different regions yield multiple clutter edges. Fig. 6(a)
also demonstrates an example area of high iceberg density. It is
also clearly seen an area of wind-roughened open water with
increased backscatter in the inner fjord in Fig. 6(d) within
the indicated ROI. Fig. 6(b) and (c) shows a combination
of fast ice and drift ice attached to the eastern shore of
the fjord and on the threshold between Lovenøyane and
Blomstrandhalvøya, which delimits the boundary between the
inner and intermediate fjord.

V. EXPERIMENTAL RESULTS

This section examines the proposed iceberg detection per-
formance in various real scenarios based on RS-2 PolSAR
images listed in Table II and discussed in Section IV.

We confine this paper to the ROI highlighted in Figs. 5 and 6
covering an area of 8 km × 7 km and 401 × 351 pixels
in size. The intensities and polarimetric features are then
extracted for every scene and transformed to logarithmic

scale within the ROI. Here, we use the geometric intensity,
and the relative kurtosis as input. Among the different
polarimetric features described in Section III-C, RK and
GB are the ones that produce the smoothest and less
speckled segmentation results. Figs. 7(a)–(h) and 8(a)–(h)
show the GB [see Figs. 7(a)–(d) and 8(a)–(d)] and RK
[see Figs. 7(e)–(h) and 8(e)–(h)] obtained from covariance
matrix data in 20-m resolution for April and September scenes,
respectively. Figs. 7(i)–(l) and 8(i)–(l) illustrate the 2-D scatter
density plots for the features GB versus RK to demonstrate
that a simple mixture of Gaussian clustering may be quite
appropriate. These scatter plots show one or two distinct
globular clusters in most cases with the details of two more
minor clusters.

The number of clusters is automatically determined using a
GoF test stage. For the proposed segmentation-based scheme
for iceberg detection, the confidence level is set to 99% in
the GoF test, and a subsampling factor of s = 2 is applied.
A discrete MRF contextual smoothing stage completes the seg-
mentation by integrating contextual information to improve the
connectivity among the image segments. Finally, the cluster
labels are sorted in the order of GB. The top two segments
with the highest GBs are then taken to be analyzed by the
shape and geometric parameters described in Section III-E to
identify icebergs from the other segments.

As shown from the Pauli RGB images in
Figs. 9(a), (e), (i), and (m) and 10(a), (e), (i), and (m),
there are icebergs visible as bright points floating or grounded
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TABLE III

NUMBER, TOTAL AREA, DENSITY OF DETECTED ICEBERGS, AND
RT ON THE RS-2 SCENES WITHIN THE ROI.

IB: ICEBERG. RT: RUNNING TIME

in the area. Figs. 9(b), (f), (j), and (n) and 10(b), (f), (j), and (n)
illustrate the clustering result of the EM-based segmentation
processor. Yellow and brown classes correspond to the
clusters with higher brightness than others. It shows that the
segmentation algorithm is able to separate sea ice, icebergs,
and open water. As seen in Fig. 9(m), the most challenging
case, the segmentation can automatically handle not only high
iceberg density but also inhomogeneities caused by sea ice
in the background clutter. In Figs. 9(c), (g), (k), and (o) and
10(c), (g), (k), and (o), we illustrate the effect of applying the
discrimination, as described in Section III-E, such that only
iceberg-like objects are retained. Iceberg centroids are overlaid
on the GB images, as seen in Figs. 9(d), (h), (l), and (p)
and 10(d), (h), (l), and (p). We have also produced detection
maps from the CFAR algorithm on the GB image but not
included them in this paper. Degraded performance was
observed in the most challenging cases resulting in missing
icebergs and higher false alarm rate compared with our
iceberg detection methodology. Table III summarizes the
number of icebergs for each scene within the indicated ROI
with an averaged density per square kilometer. The running
times (RTs) of the proposed iceberg detection methodology
are also presented in Table III. The experiments were
conducted using a Macbook Pro with Intel Core i7 CPU
of 2.5 GHz and memory of 16 GB. The program codes were
written in MATLAB.

Information about the size of detected icebergs represents
in many cases valuable knowledge. For this purpose, the size
distribution (area and length of object’s major axis) of the
confirmed targets within the ROI in the RS-2 data series is
plotted in Fig. 11. The overall size and major axis length
range between 400–9600 m2 and 20–260 m, respectively. Note
that these numbers for the amount and size of icebergs are
special for the Kongsfjorden area and for this season and this
might not be a situation what an operator could expect on a
regular basis. Unfortunately, ground-based measurements are
not available for these data sets and the interpretations of the
results are only qualitative.

VI. CONCLUSION

In this paper, we proposed an NRT processing chain for
iceberg detection using high-resolution C-band PolSAR data.
We have looked into iceberg detection in nonhomogeneous
sea clutter environments. The frequently encountered issues
caused by the capture and clutter edge effects are primarily

responsible for the degradation of the CFAR detection
performance resulting in an increased number of false alarms
and/or missing icebergs. A segmentation-based iceberg detec-
tion methodology has been proposed, where the introduc-
tion of the polarimetric features and the segmentation stage
have proved to be favorable and beneficial in various real
complex situations. We tested the algorithm with a series
of quad-pol RS-2 images covering different sea states, wind
conditions, and incidence angles in open and ice-infested water
background and high iceberg density areas.

Compared with the conventional CFAR detector, the pro-
posed iceberg detection scheme can handle different sea states,
sea-ice target situations, and high iceberg density situations
without window processing. In addition, the proposed method-
ology is tuned for operational NRT services with an average
processing time of less than 10 min for a fine quad-pol RS-2
scene. Quad-pol SAR imagery acquired by current missions
is confined to small swath widths. Besides monitoring fjords
and harbors, this is a limitation for iceberg detection services
since vast areas are to be covered. However, the methodology
proposed in this paper can be applied to dual-polarization
SAR data with larger swath widths, such as data provided
by the European Space Agency’s Sentinel-1 extra wide mode.
However, the reduction in dimensionality is expected to have
a negative impact on detection performance. As a concluding
remark, we note that there is an outlook for future satellite
missions capable of providing quad-pol SAR data with larger
swaths, such as the German Aerospace Center’s Tandem-L.
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